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Thermodynamic model of electric-field-induced pattern formation in binary dielectric fluids

M. D. Johnson,* X. Duan, Brett Riley, Aniket Bhattacharya,† and Weili Luo‡
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An electric-field-induced phase transition and pattern formation in a binary dielectric fluid layer are studied
using a coarse-grained free-energy functional. The electrostatic part of the free energy is a nonlinear functional
of the dielectric function, which depends in turn on the local colloidal concentration. We determine the phase
coexistence curve and find that beyond a critical electric field the system phase separates. Accompanying the
phase separation are patterns similar to those observed in a spinodal decomposition of an ordinary binary fluid.
The temporal evolution of the phase separating patterns are discussed both analytically and numerically by
integrating a Cahn-Hilliard type of equation.
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I. INTRODUCTION

Systems undergoing a phase separation from a disord
phase to a more ordered state often form interesting patt
@1# as they select and approach the final state. The proce
phase ordering, or coarsening dynamics, can be class
into different universality classes depending on the phys
dimension, the dimension of the order parameter, and c
servation laws@2,3#. Typically the associated scaling prope
ties and dynamical universalities can be understood usin
coarse-grained free-energy functional. A phenomenolog
equation of motion for the order parameter field using a ti
dependent Ginzburg-Landau approach then allows stud
the evolving patterns@4#.

Ferrofluids@5#, which are colloidal suspensions of ma
netic particles in solution, exhibit complex labyrinthine pa
tern formation when trapped between closely spaced g
plates and subjected to a transverse magnetic field@5–7#.
The complex patterns result from competition between
surface tension and long-range forces, and have muc
common with patterns observed in amphiphilic systems
Langmuir-Blodget films. In this paper we report on a simi
effect in colloidal suspensions in which phase separation
a concomitant pattern formation are driven by an exter
electric field. Our results are based upon a macroscopic t
modynamic model of a dielectric binary liquid. This wor
was motivated by recent experiments demonstrating such
havior @8,9#, and shares some features in common with
experiments. We reported some preliminary results in R
@9,10#.

We consider colloids consisting of nanometer scale~typi-
cal diameter;10 nm) dielectric particles suspended in a
electric solution. The patterns examined here have len
scales much larger than the particle size and the typica
terparticle spacing. Consequently we use a coarse-gra
free-energy functional and obtain the corresponding Ca
Hilliard equation@11–13# to study the evolving patterns in
colloidal suspension driven by an electric field. This is sim
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lar to the model B for a conserved scalar order param
used to study phase separation in binary liquids@2–4#. In the
present work the order parameter is the local particle conc
tration or volume fractionc(r ) (0<c<1). We model the
particle interaction using a local dielectric constant«„c(r )…
which depends nonlinearly on the local concentration. T
use of a phenomenological dielectric constant«(c) with a
positive curvature is an important ingredient of the model
turns out that beyond a critical value of the electric field t
electrostatic energy dominates and drives phase separ
and pattern formation.

The approach developed in this paper is thermodynam
based on a macroscopic free energy. Analyzing equilibri
properties yields a phase diagram which exhibits instabili
that can lead to pattern formation. Some understanding of
dynamics of pattern formation then comes from investigat
the corresponding time-dependent Ginzburg-Landau eq
tion. We begin by describing the model free energy and
equilibrium properties, and then turn to dynamics.

II. MODEL FREE ENERGY

Consider a binary dielectric liquid as described abo
placed between parallel capacitor plates separated byd. The
liquid has capacitance

C5
1

4pd2E d3r«„c~r !…. ~1!

When the internal energy is dominated by the electrost
contribution, the Helmholtz free energy is

F5 1
2 QV2TS, ~2!

where V is the voltage between the plates,T denotes the
temperature, andS represents the entropy. The equilibriu
state is obtained by minimizingF at constantQ,T. For our
purposes it is more convenient to make a Legendre trans
mation to a different free energy:

V5F2QV52 1
2 QV2TS. ~3!
©2004 The American Physical Society01-1
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Equilibrium is found by minimizingV at constantV,T ~note
that V is voltage and not volume!. We will refer to V as
‘‘the’’ free energy.

For the dielectric constant« we use a phenomenologica
model due to Lichteneker@9,14#:

«~c!5« fe
gc, whereg5 ln «p /« f . ~4!

This interpolates between the dielectric constant of pure
vent (« f) and that of pure particle («p) as the concentration
varies fromc50 to c51. In this paper we use a physical
reasonable valueg53 @8,9#. The specific choice of«(c) in
Eq. ~4! is not essential. The results we report turn out to
largely independent of the form of«(c), as long as it has
positive curvature~a point we discuss later!.

We use an approximate entropy functional appropriate
interacting particles at low concentration@8,9,15,16#:

S52
kB

v E d3r $c~r !ln c~r !1@12c~r !# ln@12c~r !#%.

~5!

This expression can be obtained by a simple counting a
ment. In the absence of interactionsv is the particle volume
and Eq.~5! is the entropy of free particles@17#. Here how-
everv is instead the so-called ‘‘correlation volume,’’ whic
accounts phenomenologically for the particle interactions

In a typical experiment the plate separationd is so small
that the concentrationc(r ) can be treated as effectively tw
dimensional. Then we can let the coordinater denote lateral
position within the plane, withr5(x,y). In this limit the
electric field E becomes uniform (E5V/d), and the free
energy becomes@9#

V5dE d2r f „c~r !…, ~6a!

where

f ~c!52
E2

8p
«~c!1

kBT

v
@c ln c1~12c!ln~12c!#. ~6b!

For «(c) given in Eq.~4!, the temperature and electric fie
naturally scale to the dimensionless form

T̃5
kBT/v

« fE
2/8p

. ~7!

III. EQUILIBRIUM PHASE SEPARATION

We are interested in potential phase separations in
system. These can occur iff (c) possesses inflection poin
@18#. Suppose that in equilibrium the system phase separ
into volume fractionsx1,2 with concentrationsc1,2. If the
average concentration isc, then these must satisfy

(
i 51

2

xi51, (
i 51

2

xici5c, ~8!

and so
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x15
c22c

c22c1
, x25

c2c1

c22c1
. ~9!

To find the conditions under which the equilibrium state
phase separated in this manner, we minimize the free en
( ixi f (ci) with respect toc1 ,c2 ,x1 ,x2, subject to the con-
straints, Eq.~8!. Using Lagrange multipliers, this mean
minimizing

Ṽ5(
i 51

2

xi@ f ~ci !2mci2l#. ~10!

Except at the endpoints (xi or ci equal to 0 or 1! this mini-
mization yields

f ~ci !5mci1l, ~11a!

f 8~ci !5m. ~11b!

If c1 andc2 both satisfy Eq.~11a!, then

f ~c2!2 f ~c1!5m~c22c1!. ~12!

This result is summarized by a simple geometrical constr
tion illustrated in Fig. 1. If the straight line joining the poin
@c1 , f (c1)# and@c2 , f (c2)# is tangent tof (c) at both points,
then phase separation will occur forc1<c<c2. This can
occur only if f (c) has two or more inflection points~see Fig.
1!. For our model, the endpointsc50,1 never correspond to
a minimum free-energy state.

Consider now the free-energy densityf (c) for our dielec-
tric fluid, Eq. ~6b!. The entropic term2TS has positive cur-
vature. At high temperatures this term dominates,f (c) has
positive curvature everywhere, and the equilibrium state
homogeneous. This is illustrated by the highest-tempera
trace (T̃520) in Fig. 2, which uses the model dielectr
function Eq.~4!. As the temperature is lowered the electr
static energy term2QV/252E2«(c)/8p plays an increas-
ingly important role. When«(c) has positive curvature, the
electrostatic term has negative curvature, and at low te

FIG. 1. Two points on a curve can have a common tangent o
if the curve has at least two inflection points. The inflection poi
at cA ,cB are indicated by filled circles and the phase separa
points atc1 ,c2 by open circles.
1-2
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peratures this term leads to inflection points and phase s
ration. This is illustrated by the two lower-temperature trac
in Fig. 2.

The phase diagram for the free energy, Eq.~6b!, devel-
oped using the above procedure, is shown in Fig. 3 forg53.
Below the coexistence curve~the solid line! the homoge-
neous phase becomes metastable and in equilibrium the
tem phase separates. This curve is the locus of pointsc1,2
obtained from solving Eq.~11! at all temperatures. Although
there is no exact expression for the coexistence tempera
for the physically important case of low concentrations
find approximately

T̃coex'
~11g2gc!egc2eg

ln c
. ~13!

FIG. 2. ~a! f (c) vs c for the three scaled temperaturesT̃
51,10,20, using Eqs.~4! and ~6b! with g53. At the two lower
temperatures two inflection points are present. These are more
ily seen in ~b! f 9(c) vs c. The inflection points are indicated b
filled circles.

FIG. 3. Phase diagram for the free energy given in Eqs.~4! and

~6b! for g53. Temperature isT̃. The coexistence curveT̃coex ~solid!

and the spinodalT̃s ~dashed! are shown. The critical point, Eq.~15!,
is marked by a diamond.
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For g53 this is accurate for concentrationsc&0.3.
Lying below the dashed phase boundary in Fig. 3 is

classical spinodal region, where the homogeneous state
comes unstable@ f 9(c),0#. This phase boundary is given b
the conditionf 9(c)50, which yields

T̃s5g2egcc~12c!. ~14!

The coexistence and spinodal curves touch at a crit
point ~marked by a diamond in Fig. 3!. This occurs at the
critical concentrationcc and critical temperatureTc where
the two inflection points present at lower temperatures co
cide @and so f 9(cc)505 f-(cc)]. For the model dielectric
function, Eq.~4!, the critical values are

cc5
1

2g
~g221Ag214!, ~15a!

T̃c5g2egcccc~12cc!. ~15b!

The instabilities give the possibility of pattern formatio
which we now discuss.

IV. PATTERN FORMATION DYNAMICS

Pattern formation after quenches into the metastable
spinodal regions provides important insight into the under
ing mechanisms for phase transformation in the system.
a system like the one modeled here, it is experimenta
easier to increase the voltage suddenly while holding
temperature fixed; by Eq.~7! this is equivalent to a quench
Here we investigate pattern formation under quenches u
a Cahn-Hilliard-Cook type of equation developed from t
free energy@11–13#.

Notice first that when inhomogeneities arise the free
ergy needs an additionalu“cu2 term@11#. This can be viewed
as the surface energy between domains of different con
tration; such terms arise generally in any interacting syst
Consequently in this section we write the free energy

V5E d3r F f „c~r !…1
1

2
ku“cu2G , ~16!

wherek is a phenomenological parameter.
The concentration current density is obtained from

local chemical potentialm,

j ~r !52Mv0“m~r !, ~17!

whereM is the mobility~taken to be constant! andv0 is the
volume of the colloidal particle. Combining this with th
continuity equationċ1“• j50 yields the well-known Cahn-
Hilliard equation@11–13#

]c

]t
5Mv0¹2m. ~18!

The local chemical potential is obtained from the free e
ergy:

as-
1-3
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m~r !5v0

dV

dc~r !
U

TE

5v0@ f 8„c~r !…2k¹2c~r !#. ~19!

Inserting this into Eq.~18! gives

]c

]t
5Mv0

2@¹2f 8„c~r !…2k¹4c~r !#. ~20!

The free-energy densityf (c) is in Eqs.~4! and ~6b!. A con-
venient dimensionless form comes from writing time in un
of t and length in units ofl, where

t5
k

Mv0
2 S 8p

« fE
2D 2

, ~21a!

l5A8pk

« fE
2
. ~21b!

With these rescalings Eq.~20! becomes

]c

]t
5¹2@ f̃ 8~c!2¹2c#, ~22a!

where

f̃ ~c!52egc1T̃@c ln c1~12c!ln~12c!#. ~22b!

The Cahn-Hilliard equation~22a! allows the study of pattern
formation. In this particular case the free energy, Eq.~22b!,
was constructed to be directly relevant to experiments
dielectric colloidal fluids@8,9#. We study pattern formation
after quenches by solving Eq.~22a! starting from a uniform
distribution ~plus a small random component! @19#.

One can get some intuition about dynamics by lineariz
the Cahn-Hilliard equation@2#. The result is accurate fo
early times, before the nonlinear terms become signific
Write c(r )5c1dc(r ), wherec is the average concentration
For smalldc expand

f̃ ~c1dc!5 f̃ ~c!1m̃0dc2 1
2 b~dc!21•••, ~23!

where

m̃05 f̃ 8~c!52gegc1T̃@ ln c2 ln~12c!#, ~24a!

b52 f̃ 9~c!5
T̃s2T̃

c~12c!
. ~24b!

T̃s is given in Eq.~14!. The linear and constant terms in E
~23! play no role in the dynamics. Keeping only the secon
order term from Eq.~23!, the free energy, Eq.~16!, becomes

V'
1

2E d3r @ku“dcu22b~dc!2#. ~25!

This expansion connects our model to the coarsening
namics of model B, an idealized description of a binary al
04150
n

g

t.
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with a conserved scalar order parameterf~r !. The free en-
ergy for such a system is generally assumed to have
Ginzburg-Landau form

F5
1

2E d3r Fku“fu22bf21
u

2
f4G , ~26!

wherek andu are assumed to be positive. Below the critic
temperatureb becomes positive, yielding a broken symm
try. Higher-order terms beyondf4 are irrelevant for the dy-
namic universality class. In fact, the early-time dynamics
dominated byf2 terms. From the correspondence betwe
Eqs. ~25! and ~26! we expect our model to have early-tim
dynamics very similar to those of model B.

Using the expansion, Eq.~25! linearizes the diffusion
equation Eq.~22!:

]~dc!

]t
52¹2@bdc1¹2dc#. ~27!

This is solved by expanding the fluctuationdc in Fourier
components:

dc~r ,t !5E d2k

~2p!2
eik•rc~k,t !. ~28!

We find

c~k,t !5c~k,0!eakt, whereak5k2~b2k2!. ~29!

Outside of the spinodal regionT̃.T̃s and so by Eq.~24b!
b,0. Consequently all componentsc(k,t) decay. This de-
scribes the homogeneous equilibrium state: fluctuati
away from a uniform concentration decay.

However, within the classical spinodal regionb.0. Thus
long wavelength modes, those with wave vectork,Ab,
grow exponentially. The most rapid growth occurs forkm

5Ab/2, whereak reaches its maximum valueb2/4. Thus in
the classical spinodal regime, where the homogeneous
is unstable, early-time exponential growth leads to structu
a typical ~dimensionless! length scalekm

21;(T̃s2T)21/2.
These structures grow exponentially in time with a~dimen-
sionless! time scale 1/akm

54/b2;(T̃s2T̃)22.
For example, consider the structure factor

S~k,t !5^c~k,t !c~2k,t !&. ~30!

Here angle brackets represent a statistical average. Sup
that the initial fluctuationsc(k,0) are small and uncorrelated

^c~k,0!c~k8,0!&5A2d2~q2q8!. ~31!

Then for early times

S~k,t !5A2e2akt. ~32!

This grows ever more peaked atkm as time increases. Fou
rier transforming gives the real-space correlation function
1-4
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^dc~r ,t !dc~r 8,t !&;
A2

t1/2
eb2t/4J0~kmur2r 8u! ~33!

which exhibits the length and time scales described abo
Including dimensions, the structures developing in ea

times have a length scale

L;
l

km
5A8pk

« fE
2
A2c~12c!

T̃s2T̃
~34!

and grow with a time scale

t0;
4t

b2
5

k

Mv0
2 S 8p

« fE
2D 2F2c~12c!

T̃s2T̃
G 2

. ~35!

Deep quenches into the classical spinodal region sho
lead to dynamically developing structures on a length scaL
given by Eq. ~34!. These structures result from a lon
wavelength instability. They represent not the equilibriu
state, but the early-time evolution from the highly noneq
librium homogeneous state toward the~eventual! phase-
separated equilibrium. The linearized description is accu
for very small initial times. Soon the fluctuations grow lar
enough for the nonlinear terms to play a role, and we turn
numerical means for the solution of Eq.~22!.

V. NUMERICAL INTEGRATION OF THE DIFFUSION
EQUATION

We numerically integrate the lattice discretized version
Eqs. ~22! using a first-order Euler scheme, choosing s
sizes to avoid unphysical instabilities@20#. This algorithm is
adequate for times during which the system begins to o
nize into patterns. To carry the simulation all the way
phase separation requires a more sophisticated appr
@21#. However the model we use also omits hydrodynam
effects which may be important for the late time coarsen
process. Consequently here we present results during th
of pattern formation only.

The initial configuration consists of a uniform concentr
tion c plus a small random component. Starting from th
initial state, Eq.~22! is integrated for various values ofT̃. In
agreement with the results of the previous sections we
that phase separation occurs below the coexistence tem
ture T̃coex ~or, equivalently, above a threshold electric field!.
In the phase-separation region the concentration deve
labyrinthine patterns consisting of stripes of higher a
lower concentration.

Typical results for a quench deep into the phase separa
region are shown in Figs. 4 and 5. The latter clearly sho
that a labyrinthine pattern has developed.

We monitor two quantities during the simulation. At ea
time step we search for the maximum and minimum conc
trations, and define a contrast parameter (cmax2cmin)/2c.
This parameter indicates the visibility of the developi
pattern. Another quantity of interest is the pair correlati
function
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G~r ,t !5 K 1

VE @c~r ,t !2c#@c~r1r 8,t !2c#d2r 8L . ~36!

The average domain widthRg can be calculated from the
first zero of the normalized pair correlation functionG̃(r ,t)
5G(r ,t)/G(0,t). The upper panel of Fig. 4 shows the earl
time variation of the contrast parameter and the dom
width Rg as a function of the scaled time. The average d
main width after a rapid initial increase saturates at this te
perature to a value;4.5l.

VI. SUMMARY

Finally we summarize the results of this paper, empha
ing experimental comparisons and predictions. The mo
thermodynamic in nature, describes a dielectric colloidal s
pension using a coarse-grained free-energy functional.
free energy contains two essential ingredients: an elec
static energy and an entropy term, both expressed as no
ear functionals of the spatially varying colloidal concentr

FIG. 4. Early stage increase in contrast (cmax2cmin)/2c and do-
main size~inset! as a function of time. Here time and space are
the units of Eq.~21!. The simulation was done on a 1283128 lattice
with an initial random configuration60.01 aroundc50.1 for

g51.0 andT̃50.045.

FIG. 5. A typical snapshot at time 20. Concentrations grea
~less! than the averagec are dark~light!.
1-5



fre
m
m

rie
on

iv
da
a
n
y
th
l
x
e
in

b
el

er
at

a
e

er
y.
th
pi

-
s

is
pa
i-

ac
hi

c

not
les
se
to

ime
eak
this
gth
n.
tud-
vior
l re-

for
n
po-
ub-

t to

lds
-
n-

sion
s.

o

-

le
lloid
ts.
r

low
en-
to

e-
icu-
or
ec-
ure

n-
gh

JOHNSONet al. PHYSICAL REVIEW E 69, 041501 ~2004!
tion. This model shares features of a Ginzburg-Landau
energy that describes the phase separation of a binary
ture. Certain other features which would require a more co
plicated order parameter have been omitted, e.g., the o
tational ordering arising from a magnetic dipolar interacti
in the case of ferrocolloids.

Several features of this model are in good qualitat
agreement with existing experiments on dielectric colloi
suspensions@8,9#. ~1! The model clearly shows phase sep
ration and pattern formation driven by an electric field. O
distinctive feature seen in both experiment and this theor
the existence of a threshold critical field above which
instability starts.~2! The resulting patterns exhibit a typica
labyrinthine morphology very similar to those observed e
perimentally. ~3! In the numerically obtained patterns th
stripes of high and low concentration have similar widths,
agreement with experiment.

This model also yields several predictions that can
tested by future experiments. Of note is the scaling of fi
and temperature in the formE2/T @Eq. ~7!#. By dimensional
analysis this will occur whenever the phase separation
driven by electrostatics. For the particular model used h
the threshold coexistence field above which phase separ
occurs is@Eqs.~7! and ~13!#

Ecoex5A8p

« f

kBT

v
1

T̃coex

'A8p

« f

kBT

v
ln c

~11g2gc!egc2eg
. ~37!

The threshold field here is seen to vary with temperature
T1/2. This will occur whenever the electrostatic energy driv
the phase separation, because of scaling.

A deep quench into the spinodal region leads to patt
formation with a characteristically labyrinthine morpholog
This is a general result independent of most details of
free energy used here. For our model in particular the s
odal threshold electric field is@Eqs.~7! and ~14!#

Es5A8p

« f

kBT

v
1

T̃s

5A8p

« f

kBT

v
1

g2egcc~12c!
. ~38!

This threshold field also exhibits theT1/2 temperature depen
dence which occurs for electric-field-driven phase tran
tions.

A characteristic feature of the dynamics of our model
that quenches into the spinodal region lead to very fast
tern formation. This is evident in Fig. 4. Our analytic exam
nation of the early-time dynamics in Sec. IV showed char
teristic length and time scales for pattern formation in t
regime@Eqs.~34! and~35!#. Explicitly showing the electric-
field dependence, the early-time patterns have a length s

L;A2kvEs
2c~12c!

kBT~E22Es
2!

~39!

and grow with a time scale
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t0;
k

Mv0
2 F2vEs

2c~12c!

kBT~E22Es
2!

G 2

. ~40!

The electric-field dependence of the length scale was
observed in experiment. However, notice that both sca
diverge at threshold. Rapid early-time growth with the
characteristic length and time scales might be difficult
observe experimentally, since the patterns in this early-t
regime have very small contrast. On the other hand, a l
current has been found in the experiment, and whether
has something to do with the field dependence of the len
scale in these patterns is under experimental investigatio

The above discussion and the analytic and numerical s
ies of dynamics in this paper have emphasized the beha
under deep quenches, that is, quenches into the spinoda
gion. Shallower quenches into the metastable region~be-
tween the coexistence and spinodal lines in Fig. 3, i.e.,
fields aboveEcoex but belowEs) should also lead to patter
formation, but via nucleation rather than spinodal decom
sition. Further studies in the metastable regime require s
stantial improvements in numerical algorithms. We expec
investigate this interesting regime in the future.

The particular dependences of the two threshold fie
Es ,Ecoex on average concentrationc and the material param
eter g are somewhat specific to our model. At low conce
trationsEs in Eq. ~38! varies asc21/2. This is probably reli-
able, since it can be traced back to our entropy expres
Eq. ~5!, which in turn is most accurate at low concentration
At low concentrationsEcoex in Eq. ~37! varies as (lnc)1/2.
Experimentally it would be difficult to distinguish these tw
threshold fields since for fields aboveEcoex but approaching
Es pattern formation might look similar to spinodal decom
position.

Equation~38! also shows that at low concentrationsEs
;1/g51/ln(«p /«f). This captures the intuitively reasonab
feature that the threshold field decreases when the co
and solvent have increasingly different dielectric constan
The coexistence threshold fieldEcoex also decreases unde
these circumstances.

The phenomenology used here is most accurate at
particle concentrations. In particular, the entropy is ess
tially that of free particles, modified to take interactions in
account via the phenomenological correlation volumev. Ex-
periments with low overall concentrations should be d
scribed with reasonable accuracy by this model. The part
lar functional used for the electrostatic energy is of min
import. As long as the functional dependence of the diel
tric constant on particle concentration has positive curvat
essentially the same results are obtained.

ACKNOWLEDGMENTS

We thank Geoff Canright and John Evans for helpful co
versations. We acknowledge support from the NSF throu
Grants Nos. DMR99-72683~M.D.J.!, DMR00-72901~W.L.!,
and NSF-NIRT ~ENG/ECS and CISE/EIA! Grant No.
0103587~A.B. and W.L.!.
1-6



.C

.

nd

E.

in

nd
l

fe

on

THERMODYNAMIC MODEL OF ELECTRIC-FIELD- . . . PHYSICAL REVIEW E 69, 041501 ~2004!
@1# For a review of pattern formation, see M.C. Cross and P
Hohenberg, Rev. Mod. Phys.65, 851 ~1993!.

@2# J. D. Gunton, M. San Miguel, and P. S. Sahni, inPhase Tran-
sition and Critical Phenomena, edited by C. Domb and J. L
Lebowitz ~Academic, London, 1983!, Vol. 8.

@3# A.J. Bray, Adv. Phys.43, 357 ~1994!.
@4# P.C. Hohenberg and B.I. Halperin, Rev. Mod. Phys.49, 435

~1977!.
@5# R. E. Rosenweig,Ferrohydrodynamics~Dover, New York,

1997!.
@6# A.J. Dickinson, S. Erramilli, R. Goldstein, D.P. Jackson, a

S.A. Langer, Science261, 1012~1993!.
@7# H. Wang, Y. Zhu, C. Boyd, W. Luo, A. Cebers, and R.

Rosensweig, Phys. Rev. Lett.72, 1929~1994!.
@8# Xiaodong Duan and Weili Luo, Int. J. Mod. Phys. B15, 837

~2001!.
@9# Xiaodong Duan, Weili Luo, B. Wacase, and R.C. Davis, e-pr

cond-mat/0105484.
@10# Brett Riley, Aniket Bhattacharya, M. D. Johnson, X. Duan, a

W. Luo, in Electrorheological Fluids and Magnetorheologica
Suspensions: Proceedings of the Eighth International Con
04150
.

t

r-

ence, Nice, France, 2001, edited by G. Bossis~World Scien-
tific, Singapore, 2002!; Int. J. Mod. Phys. B16, 2041~2002!.

@11# J.W. Cahn, J. Chem. Phys.42, 93 ~1965!.
@12# J.W. Cahn and J.E. Hilliard, J. Chem. Phys.28, 258 ~1958!.
@13# H.E. Cook, Acta Metall.18, 297 ~1970!.
@14# C. Brosseau, J. Appl. Phys.75, 672 ~1994!.
@15# R.P. Sear, Phys. Rev. E56, 4463~1997!.
@16# J. Bibette, D. Roux, and F. Nallet, Phys. Rev. Lett.65, 2470

~1990!.
@17# C. Kittel and H. Kromer,Thermal Physics, 2nd ed.~Freeman,

San Francisco, 1998!, Chap. 11.
@18# M. Plischke and B. Bergersen,Equilibrium Statistical Mechan-

ics, 2nd ed.~World Scientific, Singapore, 1994!.
@19# With the inclusion of a noise term the Cahn-Hilliard equati

is called the Cahn-Hilliard-Cook equation@13# or model B in
the classification of Hogenberg and Halperin@4#.

@20# A. Chakrabarti, R. Toral, and J.D. Gunton, Phys. Rev. B39,
4386 ~1989!.

@21# A. Chakrabarti, R. Toral, and J.D. Gunton, Phys. Rev. E47,
3025 ~1993!.
1-7


