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Thermodynamic model of electric-field-induced pattern formation in binary dielectric fluids
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An electric-field-induced phase transition and pattern formation in a binary dielectric fluid layer are studied
using a coarse-grained free-energy functional. The electrostatic part of the free energy is a nonlinear functional
of the dielectric function, which depends in turn on the local colloidal concentration. We determine the phase
coexistence curve and find that beyond a critical electric field the system phase separates. Accompanying the
phase separation are patterns similar to those observed in a spinodal decomposition of an ordinary binary fluid.
The temporal evolution of the phase separating patterns are discussed both analytically and numerically by
integrating a Cahn-Hilliard type of equation.
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I. INTRODUCTION lar to the model B for a conserved scalar order parameter
used to study phase separation in binary liquiis4]. In the
Systems undergoing a phase separation from a disordergdesent work the order parameter is the local particle concen-
phase to a more ordered state often form interesting patterrigation or volume fractionc(r) (0ssc<1). We model the
[1] as they select and approach the final state. The process pdrticle interaction using a local dielectric constafit(r))
phase ordering, or coarsening dynamics, can be classifiasghich depends nonlinearly on the local concentration. The
into different universality classes depending on the physicalise of a phenomenological dielectric constaft) with a
dimension, the dimension of the order parameter, and corpositive curvature is an important ingredient of the model. It
servation lawg2,3]. Typically the associated scaling proper- turns out that beyond a critical value of the electric field the
ties and dynamical universalities can be understood using @lectrostatic energy dominates and drives phase separation
coarse-grained free-energy functional. A phenomenologicand pattern formation.
equation of motion for the order parameter field using a time The approach developed in this paper is thermodynamic,
dependent Ginzburg-Landau approach then allows study dfased on a macroscopic free energy. Analyzing equilibrium
the evolving patternf4]. properties yields a phase diagram which exhibits instabilities
Ferrofluids[5], which are colloidal suspensions of mag- that can lead to pattern formation. Some understanding of the
netic particles in solution, exhibit complex labyrinthine pat- dynamics of pattern formation then comes from investigating
tern formation when trapped between closely spaced glagbe corresponding time-dependent Ginzburg-Landau equa-
plates and subjected to a transverse magnetic fi@].  tion. We begin by describing the model free energy and its
The complex patterns result from competition between theequilibrium properties, and then turn to dynamics.
surface tension and long-range forces, and have much in
common with patterns observed in amphiphilic systems and
Langmuir-Blodget films. In this paper we report on a similar
effect in colloidal suspensions in which phase separation and Consider a binary dielectric liquid as described above
a concomitant pattern formation are driven by an externaplaced between parallel capacitor plates separatedi e
electric field. Our results are based upon a macroscopic theliquid has capacitance
modynamic model of a dielectric binary liquid. This work
was motivated by recent experiments demonstrating such be-

Il. MODEL FREE ENERGY

havior [8,9], and shares some features in common with the C= ! j d3re(c(n)). (1)
experiments. We reported some preliminary results in Refs. 4md?
[9,10.

We consider colloids consisting of nanometer se&{pi-  \When the internal energy is dominated by the electrostatic

cal diameter~10 nm) dielectric particles suspended in a di- contribution, the Helmholtz free energy is
electric solution. The patterns examined here have length
scales much larger than the particle size and the typical in-
terparticle spacing. Consequently we use a coarse-grained
free-energy functional and obtain the corresponding Cahn- .
Hilliard equation[11—13 to study the evolving patterns in a WhereV is the voltage between the plateE,denotes the

colloidal suspension driven by an electric field. This is simi-témperature, an represents the entropy. The equilibrium
state is obtained by minimizing at constanQ,T. For our

purposes it is more convenient to make a Legendre transfor-

F=iQV-TS @)
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Equilibrium is found by minimizing) at constan¥/, T (note
that V is voltage and not volume We will refer to Q) as
“the” free energy.

For the dielectric constant we use a phenomenological
model due to Lichtenekd®,14]:

f(c)

g(c)=ee”, wherey=Ing,/e;. (4)

This interpolates between the dielectric constant of pure sol-
vent () and that of pure particles(,) as the concentration
varies fromc=0 toc=1. In this paper we use a physically
reasonable valug=3 [8,9]. The specific choice of(c) in L L L L
Eq. (4) is not essential. The results we report turn out to be 1 A B 2

largely independent of the form af(c), as long as it has

positive curvaturga point we discuss latgr

FIG. 1. Two points on a curve can have a common tangent only
if the curve has at least two inflection points. The inflection points

We use an approximate entropy functional appropriate fogt ¢, ¢, are indicated by filled circles and the phase separation

interacting particles at low concentratip®,9,15,16:

S=-— %f d3r{c(r)inc(r)+[1—c(r)]In[1—c(r)]}.
®)

points atc,,c, by open circles.

c,—C
C,—Cy’

o= C_Cl (9)
2 C,—Cy

Xl=

This expression can be obtained by a simple counting arguFo find the conditions under which the equilibrium state is

ment. In the absence of interactiomnss the particle volume
and Eq.(5) is the entropy of free particldd7]. Here how-

phase separated in this manner, we minimize the free energy
> f(c;) with respect tocq,c,,X1,X,, Subject to the con-

straints, Eq.(8). Using Lagrange multipliers, this means
minimizing

everv is instead the so-called “correlation volume,” which
accounts phenomenologically for the particle interactions.

In a typical experiment the plate separatibis so small
that the concentration(r) can be treated as effectively two
dimensional. Then we can let the coordinatdenote lateral
position within the plane, withr=(x,y). In this limit the
electric field E becomes uniform E=V/d), and the free
energy becomei9]

2
Q=23 x[f(c)~uci=]. (10

Except at the endpoints or c; equal to O or 1 this mini-
mization yields

def d?rf(c(r)), (60 f(ci))=uc+N\, (113
where f'(c)=pu. (11b
2 k .
f()=— 8E_778(C)+ %T[clncﬂl—c)ln(l—c)]. 6b) If ¢, andc, both satisfy Eq(11a), then
f(cy)—f(c))=um(co—cy). (12

For e(c) given in Eq.(4), the temperature and electric field

naturally scale to the dimensionless form This result is summarized by a simple geometrical construc-

tion illustrated in Fig. 1. If the straight line joining the points

@) [cq,f(cy)] and[cz,f(_cz)] i§ tangent tof (c) at both _points,
then phase separation will occur feg<c<c,. This can
occur only iff(c) has two or more inflection pointsee Fig.
1). For our model, the endpoints=0,1 never correspond to
a minimum free-energy state.

We are interested in potential phase separations in the Consider now the free-energy densiic) for our dielec-
system. These can occur fifc) possesses inflection points tric fluid, Eq. (6b). The entropic term-TS has positive cur-
[18]. Suppose that in equilibrium the system phase separate@ture. At high temperatures this term dominatgg) has
into volume fractionsx, , with concentrationsc; ,. If the  positive curvature everywhere, and the equilibrium state is
average concentration & then these must satisfy homogeneous. This is illustrated by the highest-temperature
trace (T=20) in Fig. 2, which uses the model dielectric
function Eq.(4). As the temperature is lowered the electro-
static energy term- QV/2= —E?¢(c)/8x plays an increas-
ingly important role. Where(c) has positive curvature, the
electrostatic term has negative curvature, and at low tem-

kgT/v

7 KeTlv
e(E%87

IIl. EQUILIBRIUM PHASE SEPARATION

2 2
E Xi:]., 2 X;Ci=C, (8)
i=1 i=1

and so
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[E/87]

f(c) [e

T For y=3 this is accurate for concentrations0.3.

Lying below the dashed phase boundary in Fig. 3 is the
classical spinodal region, where the homogeneous state be-
comes unstablgf”(c)<0]. This phase boundary is given by
the conditionf”(c)=0, which yields

To=y%"°c(1-c). (14)

The coexistence and spinodal curves touch at a critical

point (marked by a diamond in Fig.)3This occurs at the

150 critical concentratiorc, and critical temperaturd . where
o% the two inflection points present at lower temperatures coin-
N ] cide [and sof”(c.)=0=1f"(c.)]. For the model dielectric
”cj_ function, Eq.(4), the critical values are
— 0
SR 1
3_75_ 1 CC=2_(7_2+ VY +4)1 (156)
o~ Y
o (b)
150553024 . 06 03 1 Tc=7%e"%cy(1-Co). (15b)

FIG. 2. (a) f(c) vsc

The instabilities give the possibility of pattern formation,

for the three scaled temperaturds  \yhich we now diSCUSS.

=1,10,20, using Egs(4) and (6b) with y=3. At the two lower

temperatures two inflection points are present. These are more eas-

ily seen in(b) f"(c) vsc.
filled circles.

peratures this term leads to inflection points and phase sep
ration. This is illustrated by the two lower-temperature traces

in Fig. 2.
The phase diagram

oped using the above procedure, is shown in Fig. 3yfeB.
Below the coexistence curvghe solid line the homoge-
neous phase becomes metastable and in equilibrium the S)%

tem phase separates.

obtained from solving Eq11) at all temperatures. Although
there is no exact expression for the coexistence temperatu
for the physically important case of low concentrations we

find approximately

(1+y—yc)er—e”

The inflection points are indicated by IV. PATTERN FORMATION DYNAMICS

Pattern formation after quenches into the metastable or
gpinodal regions provides important insight into the underly-
ng mechanisms for phase transformation in the system. For
a system like the one modeled here, it is experimentally
easier to increase the voltage suddenly while holding the
temperature fixed; by Ed7) this is equivalent to a quench.
Here we investigate pattern formation under quenches using
_Cahn-Hilliard-Cook type of equation developed from the
ee energy{11-13.

Notice first that when inhomogeneities arise the free en-
&rgy needs an additiong¥ ¢|2 term[11]. This can be viewed
as the surface energy between domains of different concen-
tration; such terms arise generally in any interacting system.
Consequently in this section we write the free energy

for the free energy, E&p), devel-

This curve is the locus of paips

coex™>

13

1
Inc f(c(r))+ §K|VC|2 ,

Q=J' d3r

(16)

20 T T

—
AN

Temperature
=

Homogeneous

wherek is a phenomenological parameter.
The concentration current density is obtained from the
local chemical potentigl,

Jj(r)==MuvoV u(r),

whereM is the mobility (taken to be constananduvg is the
volume of the colloidal particle. Combining this with the
. continuity equatiorc+V -j=0 yields the well-known Cahn-
L Hilliard equation[11-13

(17

Classical

FIG. 3. Phase diagram for the free energy given in E4jsand

| |
0.4 0.6
Concentration ¢
Jc

> 2

(6b) for y=3. Temperature i3. The coexistence CUrvE, e (solid)

and the spinodal ; (dashedlare shown. The critical point, E¢L5),

is marked by a diamond.

The local chemical potential is obtained from the free en-
ergy:
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{0 with a conserved scalar order parametér). The free en-
M(r)zvom =vo[f'(c(r)—«VZ%(r)]. (19  ergy for such a system is generally assumed to have the
TE Ginzburg-Landau form

1
_ = 3
F 2Jdr

wherex andu are assumed to be positive. Below the critical
temperaturéb becomes positive, yielding a broken symme-
try. Higher-order terms beyond* are irrelevant for the dy-
namic universality class. In fact, the early-time dynamics are
dominated by¢? terms. From the correspondence between
2 Egs. (25) and (26) we expect our model to have early-time

Inserting this into Eq(18) gives u
K|V p|2=bg?+ 5 4%, (26

Jdc 9
E:MUO[VZf’(C(r))—KV4C(F)]. (20

The free-energy densitf(c) is in Egs.(4) and(6b). A con-
venient dimensionless form comes from writing time in units
of 7and length in units of\, where

K 8 ; T
= 5 5 (21a dynamics very similar to those of model B.
Mug |\ e¢E Using the expansion, Eq25) linearizes the diffusion
equation Eq(22):
N il (21b) a(60)
g¢E? o =—V?[bdc+V?sc]. (27)

With these rescalings E420) becomes
gs E420 This is solved by expanding the fluctuatigit in Fourier

Jc ~ components:
—=Vf'(c)-VZ], (229
— ik-r
where oc(r,t) J (277)26 c(k,t). (28
f(c)=—e”+T[cinc+(1-c)In(1—c)]. (22b  We find
The Cahn-Hilliard equatiof22g allows the study of pattern c(k,t)=c(k,0e*, wherea,=k*b—k?. (29

formation. In this particular case the free energy, &3%b),

was constructed to be directly relevant to experiments oytside of the spinodal region>T and so by Eq(24b)
dielectric colloidal fluids[8,9]. We study pattern formation p<0. Consequently all componentgk,t) decay. This de-
after quenches by solving E(R23 starting from a uniform  scripes the homogeneous equilibrium  state: fluctuations
distribution (plus a small random componefid.  away from a uniform concentration decay.

One can get some intuition about dynamics by linearizing  However, within the classical spinodal regibe-0. Thus
the Cahn-Hilliard equatiori2]. The result is accurate for long wavelength modes, those with wave veckor \b
early times, before the nonlinear terms become significaniyrow exponentially. The "most rapid growth occurs foF
Write c(r)=c+ dc(r), wherec is the average concentration. _ b/2, wherea, reaches its maximum valu/4. Thus in

For small 5c expand the classical spinodal regime, where the homogeneous state
is unstable, early-time exponential growth leads to structures

T =T TndC— % 24... ~
fle+ de)=f(c)+Rodc—2b(50)"+ - -, @3 5 typical (dimensionless length scalek,,*~(Ts—T) 2
where These structures grow exponentially in time witljdamen-
sionles time scale 1ty =4/b*~(T—T) 2.
ﬁ0=7’(c) =—ve”+T[Inc—In(1-c)], (249 For example, consider the structure factor
5 T-7 S(k,t)=(c(k,t)c(—k,t)). (30
b=—f (C)Zm. (24b)

Here angle brackets represent a statistical average. Suppose

-~ ) ] ) that the initial fluctuations(k,0) are small and uncorrelated:
T is given in Eq.(14). The linear and constant terms in Eq.

(23) play no role in the dynamics. Keeping only the second- (c(k,0)c(k’,0))=A28%(q—q’). (31)
order term from Eq(23), the free energy, Eq16), becomes

1 Then for early times
~ — 3 2_ 2
O~ zj d r[K|V5C| b( 5C) ] (25) S(k,t)=A262“kt. (32)

This expansion connects our model to the coarsening dyFhis grows ever more peaked lgf as time increases. Fou-
namics of model B, an idealized description of a binary alloyrier transforming gives the real-space correlation function
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A2 0.08
’ — b2t/4 !
(e(r,tae(r’ )~ e Moknlr—r'l)  (33) ol
which exhibits the length and time scales described above. 0.06 |
Including dimensions, the structures developing in early [
times have a length scale g 0057
0.04 |
N 8wk [2c(1—cC)
L~—= 5 e (39
Km e¢E Ts—T 0.08 |
and grow with a time scale 002, =0 - 50 200
time
47 kK g \? 2c(1-c) 2
tg~ — = — ) (35) FIG. 4. Early stage increase in contras},{,—Cnin)/2¢ and do-
b? Mvg g¢E2 T—T main size(insed as a function of time. Here time and space are in

the units of Eq(21). The simulation was done on a 12828 lattice
Deep quenches into the classical spinodal region shoulith an initial random configuration=0.01 aroundc=0.1 for
lead to dynamically developing structures on a length scale y=1.0 andT=0.045.
given by Eq.(34). These structures result from a long-
wavelength instability. They represent not the equilibrium 1
state, but the early-time evolution from the highly nonequi- G(f,t):<vj [C(f,t)—C][C(f+f',t)—0]d2f'>- (36)
librium homogeneous state toward thieventual phase-

separated equilibrium. The linearized description is accuratt.T,he average domain widtR, can be calculated from the
for very small initial times. Soon the fluctuations grow large 9

enough for the nonlinear terms to play a role, and we turn tdi"St zero of the normalized pair correlation functig(r,t)
numerical means for the solution of E@2). fG(r,t)/_G_(O,t). The upper panel of Fig. 4 shows the early—_
time variation of the contrast parameter and the domain

width Ry as a function of the scaled time. The average do-
main width after a rapid initial increase saturates at this tem-
perature to a value-4.5\.

We numerically integrate the lattice discretized version of
Egs. (22) using a first-order Euler scheme, choosing step VI. SUMMARY
sizes to avoid unphysical instabiliti€®0]. This algorithm is ) ) ) _
adequate for times during which the system begins to orga- Finally we summarize the results of this paper, emphasiz-
nize into patterns. To carry the simulation all the way toing experimental comparisons and predictions. The model,
phase separation requires a more sophisticated approagpgrmodynamlc in nature, describes a dielectric colloidal sus-
[21]. However the model we use also omits hydrodynamidPension using a coarse-grained free-energy functional. The
effects which may be important for the late time coarseningf€€ energy contains two essential ingredients: an electro-
process. Consequently here we present results during the ¥tatic energy and an entropy term, both expressed as nonlin-
of pattern formation only. ear functionals of the spatially varying colloidal concentra-

The initial configuration consists of a uniform concentra-
tion ¢ plus a small random component. Starting from this

initial state, Eq(22) is integrated for various values @t In
agreement with the results of the previous sections we find
that phase separation occurs below the coexistence tempera-

ture T ey (OF, equivalently, above a threshold electric field

In the phase-separation region the concentration develops
labyrinthine patterns consisting of stripes of higher and
lower concentration.

Typical results for a quench deep into the phase separation
region are shown in Figs. 4 and 5. The latter clearly shows
that a labyrinthine pattern has developed.

We monitor two quantities during the simulation. At each
time step we search for the maximum and minimum concen-
trations, and define a contrast parameteg,a(—Cmin)/2C.

This parameter indicates the visibility of the developing
pattern. Another quantity of interest is the pair correlation FIG. 5. A typical snapshot at time 20. Concentrations greater
function (lesg than the average are dark(light).

V. NUMERICAL INTEGRATION OF THE DIFFUSION
EQUATION
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2
. (40)

tion. This model shares features of a Ginzburg-Landau free

energy that describes the phase separation of a binary mix- to~ 5
ture. Certain other features which would require a more com- Mug
plicated order parameter have been omitted, e.g., the orien-

tational ordering arising from a magnetic dipolar interaction -
g g g P The electric-field dependence of the length scale was not

in the case of ferrocolloids. ) . .
Several features of this model are in good qualitatiVeobserved in experiment. However, notice that both scales

agreement with existing experiments on dielectric colloida/dVerge at threshold. Rapid early-time growth with these

suspension&8,d]. (1) The model clearly shows phase Sepa_characteristic length and time scales might be difficult to

ration and pattern formation driven by an electric field. One®PSe€rve experimentally, since the patterns in this early-time

distinctive feature seen in both experiment and this theory isegime Eavebvery fsma(ljl _conr:rast. On_ the othe(rj harr:d,ha Ier?k
the existence of a threshold critical field above which theCU'Tent has been found in the experiment, and whether this

instability starts.(2) The resulting patterns exhibit a typical has sc_)mething to do With the field dep_endencg of th_e Igngth
labyrinthine morphology very similar to those observed eX_scale in these patterns is under experlmental investigation.
perimentally. (3) In the numerically obtained patterns the . Thfe dabove'dls'cushs'mn and tﬂe analyuchanq n(;m;}engalhstu_d—
stripes of high and low concentration have similar widths, in'es of dynamics in this paper have emphasize the pehavior
agreement with experiment under deep quenches, that is, quenches into the spinodal re-
This model also yields several predictions that can bd'o": S:allower_ quenchesd Into tréelrpetas_tablzl_e “;}“‘.’m ¢
tested by future experiments. Of note is the scaling of fieldVeen the coexistence and spinodal lines in Fig. 3, .., for

2v0EZc(1-c)
ke T(EZ—EJ)

K

the threshold coexistence field above which phase separatighightial improvements in numerical algorithms. We expect to

: investigate this interesting regime in the future.
oceurs is[Egs. (7) and (13)] The particular dependences of the two threshold fields
\/m Es,Ec0exON average concentratianand the material param-
Ecoo \/| — — = eter y are somewhat specific to our model. At low concen-
&t U Teoex trationsE, in Eq. (38) varies axc™ Y2 This is probably reli-

able, since it can be traced back to our entropy expression
8m kgT Inc Eq. (5), which in turn is most accurate at low concentrations.

. 3
& U (1+y—yc)er—e? 37 12

At low concentrationsE .., in Eq. (37) varies as (Irt)~'~
Experimentally it would be difficult to distinguish these two
The threshold field here is seen to vary with temperature athreshold fields since for fields abo#g,., but approaching
T2, This will occur whenever the electrostatic energy driveskg pattern formation might look similar to spinodal decom-
the phase separation, because of scaling. position.

A deep quench into the spinodal region leads to pattern Equation(38) also shows that at low concentratioks
formation with a characteristically labyrinthine morphology. ~1/y=1/In(e,/s5). This captures the intuitively reasonable
This is a general result independent of most details of théeature that the threshold field decreases when the colloid
free energy used here. For our model in particular the spinand solvent have increasingly different dielectric constants.

odal threshold electric field iKEgs.(7) and (14)] The coexistence threshold fiel.., also decreases under
these circumstances.
E_ 8mkgT 1 8w kgT 1 39 The phenomenology used here is most accurate at low
s™ P TS_ ef U 42%e%%(1—c) particle concentrations. In particular, the entropy is essen-

tially that of free particles, modified to take interactions into

This threshold field also exhibits the’2 temperature depen- account via the phenomenological correlation voluméx-

dence which occurs for electric-field-driven phase transiPeriments with low overall concentrations should be de-

tions. scribed with reasonable accuracy by this model. The particu-
A characteristic feature of the dynamics of our model islar functional used for the electrostatic energy is of minor

that quenches into the spinodal region lead to very fast paimport. As long as the functional dependence of the dielec-

tern formation. This is evident in Fig. 4. Our analytic exami- tric constant on particle concentration has positive curvature

nation of the early-time dynamics in Sec. IV showed characessentially the same results are obtained.

teristic length and time scales for pattern formation in this

regime[Egs.(34) and(35)]. Explicitly showing the electric-

field dependence, the early-time patterns have a length scale ACKNOWLEDGMENTS
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